Resumen:
|
The performance of eight microbial source tracking (MST) markers was evaluated in a low-resource, tropical community located in Iquitos, Peru. Fecal samples from humans, dogs, cats, rats, goats, buffalos, guinea-pigs, chickens, ducks, pigeons, and parrots were collected (n = 117). All samples were tested with human (BacHum, HF183-Taqman), dog (BactCan), pig (Pig-2-Bac), and avian (LA35, Av4143, ND5, cytB) markers using quantitative PCR (qPCR). Internal validity metrics were calculated using all animal fecal samples, as well as animal fecal samples contextually relevant for the Peruvian Amazon. Overall, Pig-2-Bac performed best, with 100% sensitivity and 88.5% specificity to detect the correct fecal source. Human-associated markers showed a sensitivity of 80.0% and 76.7%, and specificity of 66.2% and 67.6%. When limiting the analysis to contextually relevant animal fecal samples for the Peruvian Amazon, Av143 surpassed cytB with 95.7% sensitivity and 81.8% specificity. BactCan demonstrated 100% sensitivity and 47.4% specificity. The gene copy number detected by BacHum and HF183-Taqman were positively correlated (Pearson's correlation coefficient: 0.785), as well as avian markers cytB with Av4143 (Pearson's correlation coefficient: 0.508) and nd5 (Pearson's correlation coefficient: 0.949). These findings suggest that markers such as Av4143, Pig2Bac, cytb and BacHum have acceptable performance to be impactful in source attribution studies for zoonotic enteric disease transmission in this and similar low-resource communities. © 2020 The Authors
|