Título:
|
Low correlation between household carbon monoxide and particulate matter concentrations from biomass-related pollution in three resource-poor settings
|
Autores:
|
Klasen, Elizabeth M. ;
Wills, Beatriz ;
Naithani, Neha ;
Gilman, Robert H. ;
Tielsch, James M. ;
Chiang, Marilú ;
Khatry, Subarna ;
Breysse, Patrick N. ;
Menya, Diana ;
Apaka, Cosmas ;
Carter, E. Jane ;
Sherman, Charles B. ;
Miranda, J. Jaime ;
Checkley, William
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2019-02-06T14:52:19Z
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
|
Idiomas:
|
Inglés
|
Palabras clave:
|
Editados por otras instituciones
,
Artículos
,
Artículos en revistas indizadas
|
Resumen:
|
Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM2.5 and CO concentrations in 128 households across three resource-poor settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM2.5 and CO concentrations within a meter of the open-fire stove for approximately 24h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24h indoor PM2.5 and CO concentrations ranged between 615 and 1440 mug/m(3), and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM2.5 concentrations were in a safe range (
|
En línea:
|
http://doi.org/10.1016/j.envres.2015.07.012
|