Información del autor
Autor Martínez, E. |
Documentos disponibles escritos por este autor (6)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Quistberg, D.A. ; Diez Roux, A.V. ; Bilal, U. ; Moore, K. ; Ortigoza, A. ; Rodriguez, D.A. ; Sarmiento, O.L. ; Frenz, P. ; Friche, A.A. ; Caiaffa, W.T. ; Vives, A. ; Miranda, J.J. ; Alazraqui, M. ; Spinelli, H. ; Guevel, C. ; Di Cecco, V. ; Tisnés, A. ; Leveau, C. ; Santoro, A. ; Herkovits, D. ; Gouveia, N. ; Barreto, M. ; Santos, G. ; Cardoso, L. ; de Menezes, M.C. ; de Pina, M.F. ; de Lima Friche, A.A. ; de Souza Andrade, A.C. ; Alfaro, T. ; Córdova, C. ; Ruiz, P. ; Fuentes, M. ; Vergara, A.V. ; Salazar, A. ; Cortinez-O’ryan, A. ; Schmitt, C. ; Gonzalez, F. ; Baeza, F. ; Angelini, F. ; Dueñas, O.L.S. ; Higuera, D. ; González, C. ; Montes, F. ; Useche, A.F. ; Guaje, O. ; Jaramillo, A.M. ; Guzmán, L.A. ; Hessel, P. ; Lucumi, D. ; Meisel, J.D. ; Martínez, E. ; Kroker-Lobos, M.F. ; Ramirez-Zea, M. ; Folger, K.M. ; Barrientos-Gutierrez, T. ; Perez-Ferrer, C. ; Prado-Galbarro, J. ; de Castro, F. ; Rojas-Martinez, R. ; Hernández-Vásquez, A. ; Diez-Canseco, F. ; Hammond, R. ; Dronova, I. ; Sanchez, B.N. ; Hovmand, P. ; Fuchs, R.J. ; Braslow, J. ; Siri, J. ; Auchincloss, A. ; Langellier, B. ; Lovasi, G. ; McClure, L. ; Michael, Y. ; Quick, H. ; Granados, J.T. ; Garcia-España, F. ; Stankov, I. ; The SALURBAL Group | Springer Verlag | 2019-12-06T21:02:55ZStudies examining urban health and the environment must ensure comparability of measures across cities and countries. We describe a data platform and process that integrates health outcomes together with physical and social environment data to e[...]texto impreso
Bujalance, E. ; Etayo Gordejuela, J. Javier ; Martínez, E. ; Szepietowski, B. | Cambridge Univ Press | 2015This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prim[...]texto impreso
The minimum genus problem consists on determining the minimum algebraic genus of a surface on which a given group G acts. For cyclic groups G this problem on bordered Klein surfaces was solved in 1989. The next step is to fix the number of bound[...]texto impreso
An important problem in the study of Riemann and Klein surfaces is determining their full automorphism groups. Up to now only very partial results are known, concerning surfaces of low genus or families of surfaces with special properties. This [...]texto impreso
Every finite group acts as an automorphism group of several bordered compact Klein surfaces. The minimal genus of these surfaces is called the real genus of and it is denoted The systematical study of this parameter was begun by May and continue[...]texto impreso
Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by (sigma) over tilde (G). It is known that 3 cann[...]