Título:
|
Tricolored lattice gauge theory with randomness: fault tolerance in topological color codes
|
Autores:
|
Andrist, Ruben S. ;
Katzgraber, Helmut G. ;
Bombin, H. ;
Martín-Delgado Alcántara, Miguel Ángel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
IOP Publishing, 2011-08-08
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Tipo = Artículo
|
Resumen:
|
We compute the error threshold of color codes—a class of topological quantum codes that allow a direct implementation of quantum Clifford gates—when both qubit and measurement errors are present. By mapping the problem onto a statistical–mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.8(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.
|
En línea:
|
https://eprints.ucm.es/id/eprint/47824/1/Mart%C3%ADn%20Delgado%20Alc%C3%A1ntara%20M%C3%81%2024%20LIBRE.pdf
|