Título:
|
On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method
|
Autores:
|
Rodríguez Bernal, Aníbal ;
Langa, José A. ;
Suárez Fernández , Antonio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2010
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
In this paper we study in detail the geometrical structure of global pullback and forwards attractors associated to non-autonomous Lotka-Volterra systems in all the three cases of competition, symbiosis or prey-predator. In particular, under some conditions on the parameters, we prove the existence of a unique non-degenerate global solution for these models, which attracts any other complete bounded trajectory. Thus, we generalize the existence of a unique strictly positive stable (stationary) solution from the autonomous case and we extend to Lotka–Volterra systems the result for scalar logistic equations. To this end we present the sub-supertrajectory tool as a generalization of the now classical sub-supersolution method. In particular, we also conclude pullback and forwards permanence for the above models.
|
En línea:
|
https://eprints.ucm.es/id/eprint/13978/1/2010onthelong-2.pdf
|