Título:
|
Cardinal coefficients related to surjectivity, darboux, and sierpi?ski-zygmund maps
|
Autores:
|
Ciesielski, Krzysztof Chris ;
Gámez Merino, José Luis ;
Mazza, L. ;
Seoane-Sepúlveda, Juan B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Mathematical Society, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Materia = Ciencias: Matemáticas: Funciones (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
We investigate the additivity A and lineability L cardinal coeffiients for the following classes of functions: ES\SES of everywhere surjective functions that are not strongly everywhere surjective, Darboux-like, Sierpinski-Zygmund, surjective, and their corresponding intersections. The classes SES and ES have been shown to be 2c-lineable. In contrast, although we prove here that ES\SES is c+-lineable, it is still unclear whether it can be proved in ZFC that ES\SES is 2c-lineable. Moreover, we prove that if c is a regular cardinal number, then A(ES\SES) ? c. This shows that, for the class ES\SES, there is an unusually large gap between the numbers A and L.
|
En línea:
|
https://eprints.ucm.es/41510/1/Seoane114.pdf
|