Información del autor
Autor Negreanu, Mihaela |
Documentos disponibles escritos por este autor (5)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Salete, Eduardo ; Vargas, A. M. ; García, Ángel ; Negreanu, Mihaela ; Benito, Juan J. ; Ureña, Francisco | MDPI | 2020-12-20In this paper we obtain a novel implementation for irregular clouds of nodes of the meshless method called Generalized Finite Difference Method for solving the complex Ginzburg–Landau equation. We derive the explicit formulae for the spatial der[...]texto impreso
We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planc[...]texto impreso
Bonilla, Luis L. ; Carpio, Ana ; Carretero, Manuel ; Duro, Gema ; Negreanu, Mihaela ; Terragni, Filippo | Elsevier | 2018-12-15We study a robust finite difference scheme for integrodifferential kinetic systems of Fokker-Planck type modeling tumor driven blood vessel growth. The scheme is of order one and enjoys positivity features. We analyze stability and convergence p[...]texto impreso
Benito, J.J. ; Garcia, A. ; Gavete, L. ; Negreanu, Mihaela ; Ureña, F. ; Vargas, A. M. | Elsevier | 2020-04In the present paper we propose the Generalized Finite Difference Method (GFDM) for numerical solution of a cross-diffusion system with chemotactic terms. We derive the discretization of the system using a GFD scheme in order to prove and illust[...]texto impreso
Benito, J. J. ; Garcia, A. ; Gavete, L. ; Negreanu, Mihaela ; Ureña, F. ; Vargas, M. A. | Elsevier | 2021-06In this paper a parabolic-parabolic chemotaxis system of PDEs that describes the evolution of a population with non-local terms is studied. We derive the discretization of the system using the meshless method called Generalized Finite Difference[...]