Título: | Coherent systems and Brill-Noether theory. |
Autores: | Bradlow, S.B. ; García Prada, O. ; Muñoz, Vicente ; Newstead, P. E. |
Tipo de documento: | texto impreso |
Editorial: | World Scientific, 2003 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Geometria algebraica , Tipo = Artículo |
Resumen: |
Let X be a curve of genus g. A coherent system on X consists of a pair (E; V ), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter a. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k = 1; 2; 3 and n = 2 explicitly. For small values of , the moduli spaces of coherent systems are related to the Brill-Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to nd the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill{Noether loci with k |
En línea: | https://eprints.ucm.es/id/eprint/21268/1/VMu%C3%B1oz56.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |