Título:
|
On ?-independence and the Kunen-Shelah property
|
Autores:
|
Jiménez Sevilla, María del Mar ;
Granero, A. S. ;
Moreno, José Pedro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Cambridge Univ Press, 2002-06
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
We prove that spaces with an uncountable omega-independent family fail the Kunen-Shelah property. Actually, if {x(i)}(iis an element ofI) is an uncountable w-independent family, there exists an uncountable subset J.C I such that x(j) is not an element of (conv) over bar({x(i)}(iis an element ofj/{j}) for every j is an element of J. This improves a previous result due to Sersouri, namely that every uncountable omega-independent family contains a convex right-separated subfamily.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16386/1/Jimenez09.pdf
|