Título:
|
Finite extinction and null controllability via delayed feedback non-local actions
|
Autores:
|
Díaz Díaz, Jesús Ildefonso ;
Casal, A.C. ;
Vegas Montaner, José Manuel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Pergamon-Elsevier Science, 2009-12-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis numérico
,
Tipo = Artículo
|
Resumen:
|
We give sufficient conditions to have the finite extinction for all solutions of linear parabolic reaction-diffusion equations of the type partial derivative u/partial derivative t - Lambda u = -M(t)u(t - tau, x) (1) with a delay term tau > 0, on Omega, an open set of R(N), M(t) is a bounded linear map on L(p)(Omega), u(t, x) satisfies a homogeneous Neumann or Dirichlet boundary condition. We apply this result to obtain distributed null controllability of the linear heat equation u(t) - Delta u = upsilon(t, x) by means of the delayed feedback term upsilon(t, x) = -M(t)u(t - tau, x).
|
En línea:
|
https://eprints.ucm.es/id/eprint/15071/1/11.pdf
|