Título: | Double Coverings Of Klein Surfaces By A GivenRiemann Surface |
Autores: | Gamboa, J. M. ; Bujalance, E. ; Conder, M.D.E ; Gromadzki, G. ; Izquierdo, Milagros |
Tipo de documento: | texto impreso |
Editorial: | Elsevier Science, 2002 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/restrictedAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Álgebra , Tipo = Artículo |
Resumen: |
Let X be a Riemann surface. Two coverings p1 : X ? Y1 and p2 : X ? Y2 are said to be equivalent if p2 =’p1 for some conformal homeomorphism ’: Y1 ? Y2. In this paper we determine, for each integer g¿2, the maximum number R(g) of inequivalent rami>ed coverings between compact Riemann surfaces X ? Y of degree 2; where X has genus g. Moreover, for in>nitely many values of g, we compute the maximum number U(g) of inequivalent unrami>ed coverings X ? Y of degree 2 where X has genus g and admits no rami>ed covering. For the remaining values of g, the computation of U(g) relies on a likely conjecture on the number of conjugacy classes of 2-groups. We also extend these results to double coverings X ? Y , where. Y is now a proper Klein surface. In the language of algebraic geometry, this means we calculate the number of real forms admitted by the complex algebraic curve X . c 2002 Elsevier Science B.V. All rights reserved. |
En línea: | https://eprints.ucm.es/id/eprint/15276/1/13.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |