Título: | On the character variety of group representations of a 2-bridge link p/3 into PSL(2,C) |
Autores: | Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María |
Tipo de documento: | texto impreso |
Editorial: | Sociedad Matemática Mexicana, 1992 |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Geometría diferencial , Materia = Ciencias: Matemáticas: Topología , Tipo = Artículo |
Resumen: |
Consider the group G of a classical knot or link in S3. It is natural to consider the representations of G into PSL(2,C). The set of conjugacy classes of nonabelian representations is a closed algebraic set called the character variety (of representations of G into PSL(2,C)). If G is the group of a 2-bridge knot or link, then a polynomial results by an earlier published theorem of the authors. This polynomial is related to the Morgan-Voyce polynomials Bn(z), which can be defined by the formulas pn(z)=Bn(z?2), where pn=zpn?1?pn?2, p0=1, p1=z, or (z1?10)n=(pnpn?1?pn?1?pn?2). In this paper the authors do many calculations for classes of 2-bridge knots or links. |
Ejemplares
Estado |
---|
ningún ejemplar |