Título: | The alternative Dunford-Pettis property on projective tensor products |
Autores: | Villanueva, Ignacio ; Peralta Pereira, Antonio Miguel |
Tipo de documento: | texto impreso |
Editorial: | Springer, 2006-04 |
Dimensiones: | application/pdf |
Nota general: | info:eu-repo/semantics/openAccess |
Idiomas: | |
Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Análisis matemático , Tipo = Artículo |
Resumen: |
A Banach space X has the Dunford–Pettis property (DPP) if and only if whenever (xn) and (pn) are weakly null sequences in X and X*, respectively, we have pn(xn)? 0. Freedman introduced a stricly weaker version of the DPP called the alternative Dunford–Pettis property (DP1). A Banach space X has the DP1 if whenever xn ! x weakly in X, with kxnk = kxk, and (xn) is weakly null in X*, we have that xn(xn)? 0. The authors study the DP1 on projective tensor products of C*-algebras and JB*-triples. Their main result, Theorem 3.5, states that if X and Y are Banach spaces such that X contains an isometric copy of c0 and Y contains an isometric copy of C[0, 1], then Xˆ_Y , the projective tensor product of X and Y , does not have the DP1. As a corollary, they get that if X and Y are JB*-triples such that X is not reflexive and Y contains `1, then Xˆ_Y does not have the DP1. Furthermore, if A and B are infinite-dimensional C*-algebras, then Aˆ_B has the DPP if and only if Aˆ_B has the DP1 if and only if both A and B have the DPP and do not contain `1. |
En línea: | https://eprints.ucm.es/id/eprint/11675/1/2006AlternativeDunfordPettis.pdf |
Ejemplares
Estado |
---|
ningún ejemplar |