Título:
|
Maurey-Rosenthal factorization for p-summing operators and Dodds-Fremlin domination
|
Autores:
|
Palazuelos Cabezón, Carlos ;
Sánchez Pérez, Enrique A. ;
Tradacete Pérez, Pedro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
The Theta Foundation, 2012
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Tipo = Artículo
|
Resumen:
|
We characterize by means of a vector norm inequality the space of operators that factorize through a p-summing operator from an L-r-space to an L-s-space. As an application, we prove a domination result in the sense of Dodds-Fremlin for p-summing operators on Banach lattices with cotype 2, showing moreover that this cannot hold in general for spaces with higher cotype. We also present a new characterization of Banach lattices satisfying a lower 2-estimate in terms of the order properties of 2-summing operators.
|
En línea:
|
https://eprints.ucm.es/id/eprint/24433/1/Palazuelos02.pdf
|