Título:
|
Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat
|
Autores:
|
Fernández Pérez, Luis Antonio ;
Gordillo Guerrero, A. ;
Martín Mayor, Víctor ;
Ruiz Lorenzo, J. J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2009-11-06
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Tipo = Artículo
|
Resumen:
|
A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, ?, and of the (Fisher-renormalized) thermal ? exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.
|
En línea:
|
https://eprints.ucm.es/37859/1/Fern%C3%A1ndezP%C3%A9rezLuisAntonio16LIBRE.pdf
|