Título:
|
Arnold’s conjecture and symplectic reduction
|
Autores:
|
Ibort, A. ;
Martínez Ontalba, Celia
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 1996
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
Fortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that CPn-1 is a symplectic quotient of C-n. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q,Omega) to a critical point problem with symmetry on loops in R(2n) With its Standard symplectic structure.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16829/1/Ontalba03.pdf
|