Título:
|
Stability in quadratic torsion theories
|
Autores:
|
Borislavov Vasilea, Teodor ;
Ruiz Cembranos, José Alberto ;
Gigante Valcarcel, Jorge ;
Martín Moruno, María del Prado
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 2017-11-10
|
Dimensiones:
|
application/pdf
|
Nota general:
|
cc_by
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Tipo = Artículo
|
Resumen:
|
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier.
|
En línea:
|
https://eprints.ucm.es/48022/1/CembranosJAR63libre%2BCC.pdf
|