Título:
|
Mathematical framework for pseudo-spectra of linear stochastic difference equations
|
Autores:
|
Bujosa Brun, Marcos ;
Bujosa Brun, Andrés ;
García Ferrer, Antonio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Facultad de CC Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE), 2015
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = No publicado
,
Materia = Ciencias Sociales: Economía: Econometría
,
Tipo = Documento de trabajo o Informe técnico
|
Resumen:
|
Although spectral analysis of stationary stochastic processes has solid mathematical foundations, this is not always so for some non-stationary cases. Here, we establish a rigorous mathematical extension of the classic Fourier spectrum to the case in which there are AR roots in the unit circle, ie, the transfer function of the linear time-invariant filter has poles on the unit circle. To achieve it we: embed the classical problem in a wider framework, the Rigged Hilbert space, extend the Discrete Time Fourier Transform and defined a new Extended Fourier Transform pair pseudo-covariance function/pseudo-spectrum. Our approach is a proper extension of the classical spectral analysis, within which the Fourier Transform pair auto-covariance function/spectrum is a particular case. Consequently spectrum and pseudo-spectrum coincide when the first one is defined.
|
En línea:
|
https://eprints.ucm.es/id/eprint/20699/1/1313.pdf
|