Título:
|
Tempering Rayleigh's curse with PSF shaping
|
Autores:
|
Paúr, Martin ;
Stoklasa, Bohumil ;
Grover, Jai ;
Krzoc, Andrej ;
Sánchez Soto, Luis Lorenzo ;
Hradil, Zdenek ;
?ehá?ek, Jaroslav
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Optical Society of America, 2018-09-25
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Optica
,
Tipo = Artículo
|
Resumen:
|
It has been argued that, for a spatially invariant imaging system, the information one can gain about the separation of two incoherent point sources decays quadratically to zero with decreasing separation. The effect is termed Rayleigh's curse. Contrary to this belief, we identify a class of point-spread functions (PSFs) with a linear information decrease. Moreover, we show that any well-behaved symmetric PSF can be converted into such a form with a simple nonabsorbing signum filter. We experimentally demonstrate significant superresolution capabilities based on this idea. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
|
En línea:
|
https://eprints.ucm.es/50462/1/SanchezSotoLL%2021%20LIBRE.pdf
|