Título:
|
A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology
|
Autores:
|
Díaz Díaz, Jesús Ildefonso ;
Tello, L.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Universidad de Barcelona, 1999
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We present some results on the mathematical treatment of a global twodimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a uniqueness criterion in terms of the behaviour of the solution near its “ice caps”.
|
En línea:
|
https://eprints.ucm.es/33160/1/193.pdf
|