Título:
|
Mayer-vietoris property of the fixed point index
|
Autores:
|
Barge, Héctor ;
Wójcik, K.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Juliusz Schauder Center, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
In this paper we study a Mayer-Vietoris kind of formula for the fixed point index of maps of ENR triplets f : (X;X1,X2) ? (X;X1,X2) having compact fixed point set. We prove it under some suitable conditions. For instance when (X;X1,X2) = (En;En+,En ?). We use these results to generalize Poincar´e-Bendixson index formula for vector fields to continuos maps having a sectorial decomposition, to study the fixed point index i(f, 0) of orientation preserving homeomorphisms of E2 + and (E3;E3 +,E3 ?) and the fixed point index in the invariant subspace.
|
En línea:
|
https://eprints.ucm.es/47101/1/Barge1.pdf
|