Información del autor
Autor Lozano Imízcoz, María Teresa |
Documentos disponibles escritos por este autor (33)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Montesinos Amilibia, José María ; Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa | American Mathematical Society | 1983-10This paper establishes two new ways of representing all closed orientable 3-manifolds. (1) Let F,N be a pair of disjoint bounded orientable surfaces in the 3-sphere S3. Let (Sk,Fk,Nk), k=1,2,3, be 3 copies of the triplet (S,F,N). Split S1 along [...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | World Scientific Publ.Co. | 2003-12The representation space or character variety of a finitely generated group is easy to define but difficult to do explicit computations with. The fundamental group of a knot can have two interesting representations into PSL2(C) coming from oppos[...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Wiley-Blackwell | 1992A Kleinian group is a discrete subgroup of PSL(2,C). As such it acts on 3-dimensional hyperbolic space H3. A Kleinian group G is said to have finite covolume if H3/G has finite volume. An interesting subclass of Kleinian groups of finite covolum[...]texto impreso
Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Pacific Journal of Mathematics | 1997The authors discuss a class of flows on 3-manifolds closely related to Anosov flows, which they call singular Anosov flows. These are flows which are Anosov outside of a finite number of periodic "singular orbits'', such that each singular orbit[...]texto impreso
Montesinos Amilibia, José María ; Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa | Cambridge Univ Press | 1987-07A link or knot in S 3 is universal if it serves as common branching set for all closed, oriented 3-manifolds. A knot is simple if its exterior space is simple, i.e. any incompressible torus or annulus is parallel to the boundary. No iterated tor[...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Sociedad Matemática Mexicana | 2004A link L is universal if every closed orientable 3-manifold M is a finite branched covering of S3 with the branch set equal to L. Known examples of universal links are the figure eight knot and the Borromean rings. It is also known that the tref[...]texto impreso
Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | World Scientific Publishing Co. Pte Ltd | 2016In this paper, dedicated to Prof. Lou Kauffman, we determine the Thurston’s geometry possesed by any Seifert fibered conemanifold structure in a Seifert manifold with orbit space (Formula presented.) and no more than three exceptional fibers, wh[...]texto impreso
Brumfield, G. ; Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María ; Ramírez Losada, E. ; Short, H. ; Tejada Cazorla, Juan Antonio ; Toro, M. | Sociedad Matemática Mexicana | 2008-10It has been shown [H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456;] that the orbifold group U of the Borromean rings with singular angle 90 degrees is universal, i.e. for every closed orientable 3-manifold M3 there is a finite inde[...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Cambridge Univ Press | 2006-01W. P. Thurston [Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130;] showed that if a hyperbolic 3-manifold with b1> 1 fibers over S1, then it fibers in infinitely many different ways. In this paper, the authors consider a certain family [...]texto impreso
Montesinos Amilibia, José María ; Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa | Elsevier | 1985The authors construct a cover S3?S3 branched over the "figure eight" knot with preimage the "roman link" and a cover S3?S3 branched over the roman link with preimage containing the Borromean rings L. Since L is universal (i.e. every closed, orie[...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Graduate School of Mathematical Sciences | 1995The authors define a one-parameter family of polyhedra P(a), 0texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | World Scientific PublCo | 2011-10-10Representations of two bridge knot groups in the isometry group of some complete Riemannian 3-manifolds as E3 (Euclidean 3-space), H3 (hyperbolic 3-space) and E2, 1 (Minkowski 3-space), using quaternion algebra theory, are studied. We study the [...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | World Scientific PublCo | 2013-01The complete classification of representations of the Trefoil knot group G in S3 and SL(2, ?), their affine deformations, and some geometric interpretations of the results, are given. Among other results, we also obtain the classification up to [...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | World Scientific PublCo | 1995Let (p/q,n) be the 3-orbifold with base S3 and singular set the 2-bridge knot determined by the rational number p/q, with p and q odd and co-prime, and with cone angle 2?/n along the knot. In this paper the authors are interested in when the or[...]texto impreso
Hilden, Hugh Michael ; Lozano Imízcoz, María Teresa ; Montesinos Amilibia, José María | Walter de Gruyter & CO | 1992This paper continues earlier work by the authors [see, in particular, H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456; H. M. Hilden, M. T. Lozano and J. M. Montesinos, in Differential topology (Siegen, 1987), 1–13, Lecture Notes in [...]