Resumen:
|
This paper is related with a research on vertical motion alleviation of fast ferries. A scaled down replica of a fast ferry was built, for experimental studies in a towing tank facility. Some submerged moving actuators were added to the replica: a pair of transom flaps, lateral fins and a T-foil near the bow. Two series of experiments with waves generated in a large basin must be done. One of the series is devoted to modelling, and the second for model-based control studies. Due to the fast motions of the experimental ship, it is not possible to attach it to a computerized carriage with instrumentation (it is part of the towing tank facility). Instead, the experimental ship must be autonomous, with all monitoring and control systems on board. Since there are six motions of the ship to be considered, the number of on-board sensors and actuators, and the complexity of control, take us to decide the design of a distributed electronic system. It is based on a central embedded PC, several microcomputer nodes, and the CANbus. The on board system interacts, using a wireless data link, with an off-shore experiment control and data processing system, with an interesting visualization performance. The purpose of the paper is to introduce this system and the associated experimental framework.
|