Título:
|
Wave solutions for a discrete reaction-diffusion equation
|
Autores:
|
Carpio, Ana ;
Chapman, S.J. ;
Hastings, S. ;
Mcleod, J.B.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Cambridge University Press, 2000
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
Motivated by models from fracture mechanics and from biology, we study the infinite system of differential equations u'(n) = u(n-1) - 2u(n) + u(n+1) - A sin u(n) + F, ' = d/dt, where A and F are positive parameters. For fixed A > 0 we show that there are monotone travelling waves for F in an interval F-crit 0. We show that, for the sine nonlinearity, this is true if A > 2. (Our method yields better estimates than this, but does not include all A > 0.) We also consider the existence and multiplicity of time independent solutions when \F\
|
En línea:
|
https://eprints.ucm.es/id/eprint/15100/1/40.pdf
|