Título:
|
Torelli theorem for moduli spaces of SL(r,C) -connections on a compact Riemann surface.
|
Autores:
|
Biswas, Indranil ;
Muñoz, Vicente
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
World Scientific Publ. Co. Pte. Ltd., 2009
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
Let X be any compact connected Riemann surface of genus g, with g ? 3. For any r ? 2, let denote the moduli space of holomorphic SL(r,?)-connections over X. It is known that the biholomorphism class of the complex variety is independent of the complex structure of X. If g = 3, then we assume that r ? 3. We prove that the isomorphism class of the variety determines the Riemann surface X uniquely up to an isomorphism. A similar result is proved for the moduli space of holomorphic GL(r,?)-connections on X.
|