Título:
|
On real forms of Belyi surfaces with symmetric groups of automorphisms
|
Autores:
|
Etayo Gordejuela, J. Javier ;
Gromadzki, G. ;
Martínez García, Ernesto
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
BIRKHAUSER VERLAG AG, 2012
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Grupos (Matemáticas)
,
Tipo = Artículo
|
Resumen:
|
In virtue of the Belyi Theorem an algebraic curve can be defined over the algebraic numbers if and only if the corresponding Riemann surface can be uniformized by a subgroup of a Fuchsian triangle group. Such surfaces are known as Belyi surfaces. Here we study the actions of the symmetric groups S n on Belyi Riemann surfaces. We show that such surfaces are symmetric and we calculate the number of connected components of the corresponding real forms.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15818/1/Etayo12.pdf
|