Título:
|
Polynomial continuity on l(1)
|
Autores:
|
Llavona, José G. ;
Joaquín M., Gutiérrez ;
González, Manuel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Mathematical Society, 1997
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
A mapping between Banach spaces is said to be polynomially continuous if its restriction to any bounded set is uniformly continuous for the weak polynomial topology. A Banach space X has property(RP) if given two bounded sequences (u(j)), (v(j)) subset of X; we have that Q(u(j)) - Q(v(j)) --> 0 for every polynomial Q on X whenever P(u(j) - v(j)) --> 0 for every polynomial P on XI i.e., the restriction of every polynomial on X to each bounded set is uniformly sequentially continuous for the weak polynomial topology. We show that property (RP) does not imply that every scalar valued polynomial on X must be polynomially continuous.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16256/1/GLlavona15.pdf
|