Título:
|
Fixed point index and decompositions of isolated invariant compacta.
|
Autores:
|
Romero Ruiz del Portal, Francisco
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier Science, 2004
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
The author proves that if f is an orientation reversing homeomorphism of the plane and p is an isolated and stable fixed point of f then the fixed point index of f at p is equal to 1 . In the orientation preserving case this result was obtained by E. N. Dancer and R. Ortega [J. Dynam. Differential Equations 6 (1994), no. 4, 631–637. The proof is based on the prime ends compactifications method and a fixed point result by K. M. Kuperberg [Proc. Amer. Math. Soc. 112 (1991), no. 1, 223–229.
|
En línea:
|
https://eprints.ucm.es/id/eprint/21777/1/RomeroRuiz19.pdf
|