Título:
|
Every closed convex set is the set of minimizers of some C1-smooth convex function
|
Autores:
|
Azagra Rueda, Daniel ;
Ferrera Cuesta, Juan
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
America Mathematical Society, 2002
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
The authors show that for every closed convex set C in a separable Banach space there is a nonnegative C1 convex function f such that C = {x: f(x) = 0}. The key is to show this for a closed halfspace. This result has several attractive consequences. For example, it provides an easy proof that every closed convex set is the Hausdorff limit of infinitely smooth convex bodies (Cn := {x: f(x) _ 1/n}) and that every continuous convex function is the Mosco limit of C1 convex functions.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12354/1/2002every1.pdf
|