Título:
|
Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions
|
Autores:
|
Mavinga, Nsoki ;
Pardo, Rosa
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Cambridge University Press, 2017
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas
,
Tipo = Artículo
|
Resumen:
|
We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle.
|
En línea:
|
https://eprints.ucm.es/44752/1/a15043.pdf
|