Título:
|
Real-Analytic Negligibility of Points and Subspaces in Banach Spaces, with Applications
|
Autores:
|
Azagra Rueda, Daniel ;
Dobrowolski, Tadeusz
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
University of Toronto Press, 2002-03
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We prove that every infinite-dimensional Banach space X having a (not necessarily equivalent) real-analytic norm is real-analytic diffeomorphic to X \ {0}. More generally, if X is an infinite-dimensional Banach space and F is a closed subspace of X such that there is a real-analytic seminorm on X whose set of zeros is F, and X / F is infinite-dimensional, then X and X \ F are real-analytic diffeomorphic. As an application we show the existence of real-analytic free actions of the circle and the n-torus on certain Banach spaces
|
En línea:
|
https://eprints.ucm.es/id/eprint/13960/1/2002realanalytic.pdf
|