Título:
|
Sums of squares of linear forms
|
Autores:
|
Fernando Galván, José Francisco ;
Ruiz Sancho, Jesús María ;
Scheiderer, Claus
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
International Press, 2006
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Teoría de números
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
Let k be a real field. We show that every non-negative homogeneous quadratic polynomial f (x(1),..., x(n)) with coefficients in the polynomial ring k[t] is a sum of 2n center dot tau(k) squares of linear forms, where tau(k) is the supremum of the levels of the finite non-real field extensions of k. From this result we deduce bounds for the Pythagoras numbers of affine curves over fields, and of excellent two-dimensional local henselian rings.
|
En línea:
|
https://eprints.ucm.es/id/eprint/15130/4/SUMS%20OF%20SQUARES%20OF%20LINEAR%20FORMS.pdf
|