| Título: | The Gonality Of Riemann Surfaces Under Projections By Normal Coverings |
| Autores: | Bujalance, E. ; Etayo Gordejuela, J. Javier ; Gamboa, J. M. ; Gromadzki, G. |
| Tipo de documento: | texto impreso |
| Editorial: | Elsevier Science, 2011 |
| Dimensiones: | application/pdf |
| Nota general: | info:eu-repo/semantics/restrictedAccess |
| Idiomas: | |
| Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Funciones (Matemáticas) , Tipo = Artículo |
| Resumen: |
A compact Riemann surface X of genus g ? 2 which can be realized as a q-fold, normal covering of a compact Riemann surface of genus p is said to be (q, p)-gonal. In particular the notion of (2, p)-gonality coincides with p-hyperellipticity and (q, 0)-gonality coincides with ordinary q-gonality. Here we completely determine the relationship between the gonalities of X and Y for an N-fold normal covering X ? Y between compact Riemann surfaces X and Y. As a consequence we obtain classical results due to Maclachlan (1971) [5] and Martens (1977) [6]. |
| En línea: | https://eprints.ucm.es/id/eprint/15207/1/04.pdf |
Ejemplares
| Estado |
|---|
| ningún ejemplar |



