Título:
|
Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping
|
Autores:
|
Rodriguez, A. ;
Malyshev, Andrey ;
Sierra, G. ;
Martín-Delgado Alcántara, Miguel Ángel ;
Rodriguez-Laguna, J. ;
Domínguez-Adame Acosta, Francisco
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
American Physical Society, 2003-01-17
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física de materiales
,
Tipo = Artículo
|
Resumen:
|
The single-parameter scaling hypothesis predicts the absence of delocalized states for noninteracting quasiparticles in low-dimensional disordered systems. We show analytically, using a supersymmetric method combined with a renormalization group analysis, as well as numerically that extended states may occur in the one- and two-dimensional Anderson model with a nonrandom hopping falling off as some power of the distance between sites. The different size scaling of the bare level spacing and the renormalized magnitude of the disorder seen by the quasiparticles finally results in the delocalization of states at one of the band edges of the quasiparticle energy spectrum.
|
En línea:
|
https://eprints.ucm.es/id/eprint/27508/1/Dguez-Adame69libre.pdf
|