| Título: | Moduli spaces of connections on a Riemann surface. |
| Autores: | Biswas, Indranil ; Muñoz, Vicente |
| Tipo de documento: | texto impreso |
| Editorial: | International Press, 2010 |
| Dimensiones: | application/pdf |
| Nota general: | info:eu-repo/semantics/openAccess |
| Idiomas: | |
| Palabras clave: | Estado = Publicado , Materia = Ciencias: Matemáticas: Geometria algebraica , Tipo = Sección de libro |
| Resumen: |
Let E be a holomorphic vector bundle over a compact connected Riemann surface X. The vector bundle E admits a holomorphic projective connection if and only if for every holomorphic direct summand F of E of positive rank, the equality degree(E)=rank(E) = degree(F)=rank(F) holds. Fix a point x0 in X. There is a logarithmic connection on E, singular over x0 with residue ¡d n IdEx0 if and only if the equality degree(E)=rank(E) = degree(F)=rank(F) holds. Fix an integer n ¸ 2, and also ¯x an integer d coprime to n. Let M(n; d) denote the moduli space of logarithmic SL(n;C){connections on X singular of x0 with residue ¡ d n Id. The isomorphism class of the variety M(n; d) determines the isomorphism class of the Riemann surface X. |
| En línea: | https://eprints.ucm.es/id/eprint/20864/1/VMu%C3%B1oz23.pdf |
Ejemplares
| Estado |
|---|
| ningún ejemplar |



