Título:
|
Exceptional sets and Hilbert–Schmidt composition operators
|
Autores:
|
Gallardo Gutiérrez, Eva A. ;
González, María J.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2003
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis matemático
,
Tipo = Artículo
|
Resumen:
|
It is shown that an analytic map phi of the unit disk into itself inducing a Hilbert-Schmidt composition operator on the Dirichlet space has the property that the set E-phi = {e(i0)is an element ofpartial derivativeD : \phi(e(10))\ = 1 has zero logarithmic capacity. We also show that this is no longer true for compact composition operators on the Dirichlet space. Moreover, such a condition is not even satisfied by Hilbert-Schmidt composition operators on the Hardy space.
|
En línea:
|
https://eprints.ucm.es/id/eprint/21122/1/Gallardo21oficial.pdf
|