Título:
|
A note on spatial uniformation for Fisher-KPPtype equations with a concentration dependentdiffusion
|
Autores:
|
Díaz Díaz, Jesús Ildefonso
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Inderscience publishers, 2012
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We prove a pointwise gradient estimate for the solution of the Cauchy problem associated to the quasilinear Fisher-KPP type equation with a diffusion coefficient ?(u) satisfying that ?(0) = 0, ?(1) = 1 and a source term ?(u) which is vanishing only for levels u = 0 and u = 1. As consequence we prove that the bounded weak solution becomes instantaneously a continuous function even if the initial datum is merely a bounded function.
|
En línea:
|
https://eprints.ucm.es/id/eprint/29667/1/154.pdf
|