Título:
|
On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient
|
Autores:
|
Doubova, Anna ;
Fernández Cara, E. ;
González Burgos, Manuel ;
Zuazua Iriondo, Enrique
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Siam Publications, 2002
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis numérico
,
Tipo = Artículo
|
Resumen:
|
We present some results concerning the controllability of a quasi-linear parabolic equation (with linear principal part) in a bounded domain of ${\mathbb R}^N$ with Dirichlet boundary conditions. We analyze the controllability problem with distributed controls (supported on a small open subset) and boundary controls (supported on a small part of the boundary). We prove that the system is null and approximately controllable at any time if the nonlinear term $f( y, \nabla y)$ grows slower than $|y| \log^{3/2}(1+ |y| + |\nabla y|) + |\nabla y| \log^{1/2}(1+ |y| + |\nabla y|)$ at infinity (generally, in this case, in the absence of control, blow-up occurs). The proofs use global Carleman estimates, parabolic regularity, and the fixed point method.
|
En línea:
|
https://eprints.ucm.es/id/eprint/12178/1/2001onthecon-19.pdf
|