Título:
|
Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity
|
Autores:
|
Arrieta Algarra, José María ;
Pardo San Gil, Rosa ;
Rodríguez Bernal, Aníbal
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Cambridge University Press, 2007-04
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Ecuaciones diferenciales
,
Tipo = Artículo
|
Resumen:
|
We consider an elliptic equation with a nonlinear boundary condition which is asymptotically linear at infinity and which depends on a parameter. As the parameter crosses some critical values, there appear certain resonances in the equation producing solutions that bifurcate from infinity. We study the bifurcation branches, characterize when they are sub- or supercritical and analyse the stability type of the solutions. Furthermore, we apply these results and techniques to obtain Landesman–Lazer-type conditions guaranteeing the existence of solutions in the resonant case and to obtain an anti-maximum principle
|
En línea:
|
https://eprints.ucm.es/id/eprint/13211/1/2005bifurcation-13.pdf
|