Título:
|
Complexity of global semianalytic sets in a real analytic manifold of dimension 2
|
Autores:
|
Andradas Heranz, Carlos ;
Díaz-Cano Ocaña, Antonio
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
WALTER DE GRUYTER, 2001
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
Let X subset of R-n be a real analytic manifold of dimension 2. We study the stability index of X, s(X), that is the smallest integer s such that any basic open subset of X can be written using s global analytic functions. We show that s(X) = 2 as it happens in the semialgebraic case. Also, we prove that the Hormander-Lojasiewicz inequality and the Finiteness Theorem hold true in this context. Finally, we compute the stability index for basic closed subsets, S, and the invariants t and (t) over bar for the number of unions of open (resp. closed) basic sets required to describe any open (resp. closed) global semianalytic set.
|
En línea:
|
https://eprints.ucm.es/id/eprint/14768/1/08.pdf
|