Título:
|
Lê’s conjecture for cyclic covers
|
Autores:
|
Luengo Velasco, Ignacio ;
Pichon, Anne
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Société Mathématique de France, 2005
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometria algebraica
,
Tipo = Artículo
|
Resumen:
|
We describe the link of the cyclic cover over a singularity of complex surface (S, p) totally branched over the zero locus of a germ of analytic function (S, p) ! (C, 0).As an application, we prove Lê’s conjecture for this family of singu-larities i.e. that if the link is homeomorphic to the 3-sphere then the singularity is an equisingular family of unibranch curves.
|
En línea:
|
https://eprints.ucm.es/id/eprint/20986/1/Luengo34.pdf
|