Información del autor
Autor Tejada Jiménez, Débora María |
Documentos disponibles escritos por este autor (5)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Montesinos Amilibia, José María ; Hilden, Hugh Michael ; Tejada Jiménez, Débora María ; Toro Villegas, Margarita María | Mathematical Association of America | 2011-04It is well known that there are 17 crystallographic groups that determine the possible tessellations of the Euclidean plane. We approach them from an unusual point of view. Corresponding to each crystallographic group there is an orbifold. We sh[...]texto impreso
Hilden, Hugh Michael ; Montesinos Amilibia, José María ; Tejada Jiménez, Débora María ; Toro Villegas, Margarita María | Academia Colombiana de Ciencias Exactas, Físicas y Naturales. | 2004A butterfly is a 3-ball B with an even number of polygonal faces, named wings, pair-wise identified. Each identification between two wings is required to be a topological reflexion whose axis is an edge shared by the wings. The set of axes of th[...]texto impreso
Hilden, Hugh Michael ; Montesinos Amilibia, José María ; Tejada Jiménez, Débora María ; Toro Villegas, Margarita María | Cambridge Univ Press | 2006-12-01A Fox coloured link is a pair (L,?), where L is a link in S3 and ? a simple and transitive representation of ?1(S3?L) onto the symmetric group ?3 on three elements. Here, a representation is called simple if it sends the meridians to transpositi[...]texto impreso
Hilden, Hugh Michael ; Montesinos Amilibia, José María ; Tejada Jiménez, Débora María ; Toro Villegas, Margarita María | Soc. Colombiana Mat. | 2012Using a new way to represent links, that we call a butter y representation, we assign to each 3-bridge link diagram a sequence of six integers,collected as a triple (p=n; q=m; s=l), such that p q s 2, 0texto impreso
Hilden, Hugh Michael ; Montesinos Amilibia, José María ; Tejada Jiménez, Débora María ; Toro Villegas, Margarita María | Soc. Colombiana Mat. | 2005In a paper of I. V. Izmest?ev and M. Joswig [Adv. Geom. 3 (2003), no. 2, 191–225;], it was shown that any closed orientable 3-manifold M arises as a branched covering over S3 from some triangulation of S3. The proof of this result is based on th[...]