Título:
|
Geometric characterizations of p-Poincaré inequalities in the metric setting
|
Autores:
|
Durand-Cartagena, Estibalitz ;
Jaramillo Aguado, Jesús Ángel ;
Shanmugalingam, Nageswari
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Universitat Aut?noma de Barcelona, 2016
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
|
Idiomas:
|
,
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We prove that a locally complete metric space endowed with a doubling measure satisfies an infinity-Poincare inequality if and only if given a null set, every two points can be joined by a quasiconvex curve which "almost avoids" that set. As an application, we characterize doubling measures on R satisfying an infinity-Poincare inequality. For Ahlfors Q-regular spaces, we obtain a characterization of p-Poincare inequality for p > Q in terms of the p-modulus of quasiconvex curves connecting pairs of points in the space. A related characterization is given for the case Q - 1
|
En línea:
|
https://eprints.ucm.es/id/eprint/28378/1/Jaramillo102.pdf
|