Título:
|
Antiproximinal norms in Banach spaces
|
Autores:
|
Borwein, Jonathan M. ;
Jiménez Sevilla, María del Mar ;
Moreno, José Pedro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Academic Press-Elsevier Science, 2002-01
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis numérico
,
Tipo = Artículo
|
Resumen:
|
We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal norms in Banach spaces with the Convex Point of Continuity Property (CPCP). Other questions related to the existence of antiproximinal bodies are also discussed.
|
En línea:
|
https://eprints.ucm.es/id/eprint/16414/1/Jimenez10.pdf
|