Título:
|
Oscillation Theorems for the Wronskian of an Arbitrary Sequence of Eigenfunctions of Schrodinger's Equation
|
Autores:
|
García Ferrero, María Ángeles ;
Gómez-Ullate Otaiza, David
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Kluwer Academic, 2015-04
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Física: Física-Modelos matemáticos
,
Materia = Ciencias: Física: Física matemática
,
Tipo = Artículo
|
Resumen:
|
The work of Adler provides necessary and sufficient conditions for the Wronskian of a given sequence of eigenfunctions of Schrodinger's equation to have constant sign in its domain of definition. We extend this result by giving explicit formulas for the number of real zeros of the Wronskian of an arbitrary sequence of eigenfunctions. Our results apply in particular to Wronskians of classical orthogonal polynomials, thus generalizing classical results by Karlin and SzegA. Our formulas hold under very mild conditions that are believed to hold for generic values of the parameters. In the Hermite case, our results allow to prove some conjectures recently formulated by Felder et al.
|
En línea:
|
https://eprints.ucm.es/id/eprint/30042/1/gomez-ullate39preprint.pdf
|