Título:
|
Uniform persistence and Hopf bifurcations in R-+(n)
|
Autores:
|
Giraldo, A. ;
Laguna, V. F. ;
Rodríguez Sanjurjo, José Manuel
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Elsevier, 2014-04-15
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/embargoedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Geometría
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
We consider parameterized families of flows in locally compact metrizable spaces and give a characterization of those parameterized families of flows for which uniform persistence continues. On the other hand, we study the generalized Poincare-Andronov-Hopf bifurcations of parameterized families of flows at boundary points of R-+(n) or, more generally, of an n-dimensional manifold, and show that this kind of bifurcations produce a whole family of attractors evolving from the bifurcation point and having interesting topological properties. In particular, in some cases the bifurcation transforms a system with extreme non-permanence properties into a uniformly persistent one. We study in the paper when this phenomenon. happens and provide an example constructed by combining a Holling-type interaction with a pitchfork bifurcation.
|
En línea:
|
https://eprints.ucm.es/id/eprint/24994/1/RodSanjurjo200.pdf
|