Título:
|
Global Approximation of Convex Functions by Differentiable Convex Functions on Banach Spaces.
|
Autores:
|
Azagra Rueda, Daniel ;
Mudarra, C.
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Heldermann Verlag, 2015
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We show that if X is a Banach space whose dual X* has an equivalent locally uniformly rotund (LUR) norm, then for every open convex U subset of X, for every real number epsilon > 0, and for every continuous and convex function f : U -> R (not necessarily bounded on bounded sets) there exists a convex function g : U -> R of class C-1 (U) such that f - epsilon
|
En línea:
|
https://eprints.ucm.es/36175/1/Azagra34libre.pdf
|