Título:
|
Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces
|
Autores:
|
Azagra Rueda, Daniel ;
Fry, Robb ;
Montesinos Matilla, Luis Alejandro
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
America Mathematical Society, 2004-10-21
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/openAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Análisis funcional y teoría de operadores
,
Tipo = Artículo
|
Resumen:
|
We show that if Y is a separable subspace of a Banach space X such that both X and the quotient X/Y have C-p-smooth Lipschitz bump functions, and U is a bounded open subset of X, then, for every uniformly continuous function f : Y boolean AND U --> R and every epsilon > 0, there exists a C-p-smooth Lipschitz function F : X --> R such that |F(y)- f( y)| less than or equal to epsilon for every y is an element of Y boolean AND U.
|
En línea:
|
https://eprints.ucm.es/id/eprint/13962/1/2005perturbed.pdf
|