Título:
|
The fresnel interferometric imager
|
Autores:
|
Koechlin, Laurent ;
Serre, Denis ;
Deba, Paul ;
Pello, Roser ;
Peillon, Christelle ;
Duchon, Paul ;
Gómez de Castro, Ana Inés ;
Karovska, Margarita ;
Desert, Jean-Michel ;
Ehrenreich, David ;
Hebrard, Guillaume ;
des Etangs, Alain Lecavelier ;
Ferlet, Roger ;
Sing, David ;
Vidal-Madjar, Alfred
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Springer, 2009-03
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Astronomía
,
Tipo = Artículo
|
Resumen:
|
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 x3.6 m square opaque foil punched with 10(5) to 10(6) void "subapertures". Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500
|
En línea:
|
https://eprints.ucm.es/id/eprint/15984/1/Castro16.pdf
|