Título:
|
Uniform density and m -density for subrings of C(X
|
Autores:
|
Garrido, M. Isabel ;
Montalvo, Francisco
|
Tipo de documento:
|
texto impreso
|
Editorial:
|
Universidad de Extremadura, Departamento de Matemáticas, 1994
|
Dimensiones:
|
application/pdf
|
Nota general:
|
info:eu-repo/semantics/restrictedAccess
|
Idiomas:
|
|
Palabras clave:
|
Estado = Publicado
,
Materia = Ciencias: Matemáticas: Topología
,
Tipo = Artículo
|
Resumen:
|
Let C(X) denote the continuous real-valued functions on a topological space X . The question of whether a u -dense subring of C(X) is m -dense is studied in this note. Recall that neighborhoods of a function f in the u -topology are determined by an interval (f??,f+?) for ? a positive number and in the m -topology by intervals (f?e,f+e) for u a positive unit in C(X) . J. Kurzweil [Studia Math. 14 (1954), 214–231, had shown that u -denseness and m -denseness are equivalent for subrings of C(X) closed under bounded inversion. Here, the authors prove that this result is not valid for arbitrary subrings of C(X) . In particular, they show that the property of every u -dense subring being m -dense is equivalent to X being pseudocompact
|
En línea:
|
https://eprints.ucm.es/id/eprint/21707/1/garrido-montalvo.pdf
|